PHYSICAL REVIEW E

VOLUME 53, NUMBER 1

JANUARY 1996

Etchant and probabilistic ballistic models of diamond growth

M. Itoh, R. Sahara, M. Takahashi, X. Hu, K. Ohno, and Y. Kawazoe
Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
(Received 13 July 1995)

Ballistic models of diamond growth in two-dimensional space are studied in detail. A probabilistic
model is introduced to simplify and reduce computation, and is successfully compared with the etchant
model, which was proposed recently by Capraro and Bar-Yam [Comput. Mater. Sci. 1, 169 (1993)]. The
growth process is shown to be divided into three distinct stages, and the limit of the expected thickness
of the diamond film is indicated. The relation between the incident angle and growth direction is dis-
cussed. Analytic equations for the density of the resulting pattern are given, and a scaling analysis is

performed.

PACS number(s): 05.40.+j, 68.35.Fx, 68.55.Jk

I. INTRODUCTION

To understand a growth process of nonuniform crys-
tals by molecular beam epitaxy (MBE) or chemical vapor
deposition (CVD), ballistic deposition models [1] have
been proposed and successfully studied by computer
simulations by Meakin [2], Family and Vicsek [3], Liang
and Kadanoff [4], and others. In the original ballistic
model, particles fall one by one from randomly selected
starting points to the substrate perpendicularly, and are
trapped on the growing object at which they first touch.
This situation is thought to be typical for the particles in
a low density gas and for the adsorption of particles with
almost no surface diffusion. Associated continuum
theories have been proposed by Ball and Witten [5], and
by Kardar, Parisi, and Zhang (KPZ) [6], which describe
the evolution and roughness of an interface. One simple
extension of this original model is to change the incident
angle of the particles from O to some value 6, and to
study the dependence of the resulting pattern on this an-
gle 6. The growth structure is generally columnar, start-
ing from the substrate. Experimentally, an empirical for-
mula for the relation between the direction of growth §
and the direction of incident particles 6,

tan{=Jtanf , (1)

has been proposed [7] and investigated [8]. Relation (1) is
known as the ‘“tangential rule.” The reliability of this
rule has been discussed from the viewpoint of the ballistic
model [9].

Recently a number of experimental studies have been
performed on diamond synthesis from the gas phase. It
utilizes a segregation process of carbon atoms from the
dissociation of such gases as methane, ethane, alcohols,
carbon monoxide, etc., and small particles and thin films
can be obtained [10-13]. (For an ab initio calculation,
see Ref. [14].) An epitaxial growth is achieved on the di-
amond substrate. The maximum thickness of the result-
ing diamond is around 100 A. Surface diffusion of carbon
atoms on the diamond (111) surface is known to be small.
Therefore, this situation offers a typical example of a sys-
tem to which the ballistic model can be applied. To
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simulate the effect of hydrogen or oxygen in gases of the
diamond growth process, Capraro and Bar-Yam [15] in-
troduced a procedure for etching in the ballistic model,
and obtained various growth patterns. They assumed
that, in addition to normal particles corresponding to
carbon particles, etchant particles such as hydrogen or
oxygen would also fall onto the substrate randomly. (The
incident angle of all particles was assumed to be O for
simplicity). We call this model the etchant ballistic mod-
el (EBM). The EBM differs from the standard ballistic
model [2,9] or the solid-on-solid model [16] even in the
absence of etchant particles, because the EBM allows
corner-to-corner adsorption rather than side-by-side ad-
sorption, in addition to the usual on-top adsorption; see
Fig. 1(a). Thus the resulting patterns also are different
from the standard model.
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FIG. 1. Etchant ballistic model: (a) shows possible places at
which normal particles can stick; (b) shows unstable particles
(square marked with circle), which are removed by the etching
particles, while (c) shows particles that are stable against etch-
ing.
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In the EBM, a topmost normal particle attached to the
surface only at lower-left or lower-right corner positions
is removed, if an etchant particle falls on top or on upper
corners of the attached normal particle. The topmost
normal particle attached bottom on top to the surface
particle without other contacts is also removed by
etchant. The processes are illustrated in Fig. 1: Fig. 1(a)
shows the possible places at which normal particles can
stick. Figure 1(b) shows the unstable particles (square
marked with circle) which are removed by the etching
particles, while Fig. 1(c) shows the particles that are
stable against etching. The etching process makes the
growth process much slower, and the time required for

the computer simulation increases with the ratio of the

number of etchant particles to the number of normal par-
ticles E/N. Although the EBM reproduces typical
characteristics of the diamond growth process in the gas
phase, it has the following two disadvantages: (i) the pro-
cess is complicated because of the introduction of etchant
particles, and (ii) the simulation requires extensive com-
puter time.

In the present paper we propose a probabilistic model
which has a sticking probability p (see Fig. 2), instead of
introducing etchant particles. We discuss the similarity
of the resulting pattern of the EBM with this ballistic
model, which we call the probabilistic ballistic model
(PBM). This model reduces the computational time
dramatically, because the number ratio of the etchants to
the normal particles, E /N, is sometimes very high in the
EBM. We shall show the results for PBM in the present
paper. In order to make a complete discussion of the re-
sulting patterns, we shall derive several important results
for the EBM.

The rest of this paper is organized as follows: the
tangential rule and 6 dependence of the density in the
original model of the EBM in the absence of etchant par-
ticles are discussed in Sec. II. In this section several ana-
lytic arguments concerning the density are also present-
ed. More general growth processes of the EBM and PBM
are discussed in detail, respectively, in Secs. III and IV.
A scaling analysis of surface morphology is given for

sticking probability = 1

sticking probability = p

FIG. 2. Probabilistic ballistic model. A normal particle at
the ith row sticks with a probability p, if the new height A; is the
same as the height of neighbors A;_, or h; .,, and if only one of
the lower corners is attached to an upper corner of a surface
particle. If both of the lower corners are attached simultane-
ously, the normal particle sticks with a probability unity.

both the EBM and PBM Sec. V. Section VI is devoted
to a summary of this paper.

II. 6 DEPENDENCES OF EBM
WITHOUT ETCHING

In the simulations described in this and the next two
sections, the length of the substrate is taken to be 200
meshes with periodic boundary conditions. To achieve
good statistics, 100 samples are taken for each case.

Since Capraro and Bar-Yam’s original model (EBM)
with no etchant particles (E /N =0) is already different in
sticking positions from the standard ballistic deposition
model of Meakin [2,9], as is mentioned in Sec. I, it is
worth deriving the incident angle 8 dependences of the
former model. First, in order to check the tangential
rule, we study the growth direction of the columnar
structures as a function of the incident angle 6 of the par-
ticles (see Fig. 3). In place of the horizontal substrate and
incident angle O, we alternatively assumed the inclined
substrate with the same angle 0 against the horizon and
vertical incidence of particles to the horizon. The results
are shown in Fig. 4, where the solid straight line indicates
the best fit to the function C tan6: The best fit below 70°
is tan=0.38tan6. The empirical tangential rule (1)
holds, but the proportional constant is altered from +.

The next interesting quantity which, to our knowledge,
has not been discussed previously is the packing density

(a) 6=0°

(b) 6=30"

(d ¢=70°

FIG. 3. Resulting patterns of Capraro and Bar-Yam’s model
without etchant particles for various incident angles (a) 6=0°,
(b) 6=30°, (c) 6=50°, and (d) 6="70".
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FIG. 4. Growing angle ¢ vs incident angle 6 (deg) of Capraro
and Bar-Yam’s model without etchant particles. The solid
straight line indicates the behavior tan{= C tan6 with a propor-
tional constant C =0.38. The dashed straight line corresponds
to C =0.5 in Eq. (1).

of the resulting pattern. The packing density p is plotted
as a function of the incident angle 0 in Fig. 5. For 6=0,
the density is close to 0.25, while for larger 6 the density
decreases gradually toward O at 6= /2. In order to un-
derstand this behavior of the density, we performed some
simple analytic considerations.

First, the density of the pattern in the case of 6=0 can
be discussed by means of a simple mean-field argument.
Suppose that the average density at a definite height is p.
The probabilities for occupying and not occupying one
site are p and 1—p, respectively, provided that the corre-
lations among neighboring sites are neglected. As shown
in Fig. 6, if site 1 is occupied, site 2 should be vacant
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FIG. 5. 0 dependence of the density of Capraro and Bar-
Yam’s model without etchant particles. The solid curve indi-
cates the theoretical relation (11) with @ =3.4 and b =1.0.
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FIG. 6. Self-consistent picture in determining the monolayer
packing density of the original ballistic model.

from the growth rule of the model, and the probability
that the first occupation right to site 1 occurs at site 3 is
p- The density for this configuration is ;. The probabili-
ty for the case where site 4 is the leftmost occupied site to
site 1 is p(1—p), associated with a density 1. Similarly
the probability for the case where site (n +1) is the left-
most occupied site should be p(1—p)" ~2, and the density
should be 1/n. The density can then be evaluated by
these exclusive events as

1p+1p(1—p)+ -+~ +%p(1—p)"‘2+
D e D

The density p is determined self-consistently by equating
itself to the above estimation:

—Ilnp—(1—p)2—p), (3)

and is evaluated as p=0.31620. In the above argument,
fluctuation from the expectation value is neglected, which
may play an important role via the over-hanger effect in
dendritic growth [16].

In the following, we will derive another analytic equa-
tion for the density of the pattern as a function of the in-
cident angle 6 of the particles, which is now the slope of
the inclined substrate to make simulation easier. In the
model, growth is associated with the adsorption of parti-
cles as shown in Fig. 7. If a particle is adsorbed at site i,
the height variable changes from h; to h;. Here the
height at time ¢ is h;, and that at time ¢ +At is h;. Ac-
cording to the particle attachment, it alters as

h{=h;+1,
i+1=h;+1
for h; > h; , and
hi=h; +1,
i+1=h; 4 +1
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for h; <h;.,. Introducing the step function ©, which is  which has a form similar to the generalized KPZ equa-
expressed by the sgn function as ©(x)=[1+sgn(x)]/2, tion [17,18]. The only difference is the absence of the
we have term proportional to V24 in our equation. [This
, difference is, however, not very important, since the term
hi=(h;+1)Oh; —h; )+ (ki +1)Oh; 1 —h;)+; V2h is always relevant in the renormalization and its ab-
(k. b Wk —h. —p ~ sence in Eq. (6) is just occasional.] Since we are consider-
r(hithic )t 3 —hi v sgnth —hi )+ T, ing the inclined substrate, we expect

(|
dx

where 7; denotes a random force acting as a random

selector of site variable i. Using a continuum approxima- h=20

tion, we obtain, by setting x =iAx,

=L(h;+h; )+ L —h |+ 147, (4)

> ~tan@ , 7

h;— + 1+, (5)

. 1
hi—z(hithip)=7 h=40

dh
hi+AX’:i;

where h and 77 are the functions of (x,¢). From Eq. (5),
we derive the equation

(6) h=80

h=120

h=160

h=200

X
FIG. 7. Relation between a sticking position i and its height FIG. 8. Typical patterns of the EBM in the case E /N =300.
h; in Capraro and Bar-Yam’s model without etchant particles. Pictures correspond to several different growing stages with

The new height at time ¢ + At is indicated as h,. heights from A =20 to 200.
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if the growth rate and in turn the average height from the
substrate are both site independent. By taking an ensem-
ble average of Eq. (6), we obtain

dh\_, ., Ax[|dn
<dx>=1+ 2 ( dx >+<’7>
~a +btanf . (8)

Since the density p is proportional to 1/{dh /dt), it is
finally expressed as

Y E——
P dt a+btanf

The best fit is obtained with @ =3.4 and b =1.0, as indi-
cated by the solid curve in Fig. 5.

9)

III. GROWTH PROCESS OF EBM

A typical growth process is shown in Fig. 8 for the
value of E/N =300. The value 4 in the figure indicates
the highest point at the time. According to this result, we
can classify the growth process into three stages. In the
first stage, up to # =40, an almost flat surface is main-
tained, and the resulting pattern is completely dense. The
sites are almost all stable. In the second stage, up to
h =120, inclined facets with the angle of +45° appear.

(a) E/N=0/1 ?

(b)  E/N=10/1

(c) E/N=500/1

(d) E/N=1000/1

FIG. 9. Patterns of the EBM for different E /N values: (a)
E/N=0, () E/N =10, (c) E/N =500, and (d) E /N =1000.
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The surface is covered almost everywhere with these in-
clined facets with +45° at the end of this stage (at # =120
in Fig. 8), and there remain almost no stable sites for new
incident particles. In the third stage, after h > 120,
columnar growths start. The growth of the structure be-
comes two orders of magnitude slower in the third stage
compared to the first two stages. In Fig. 8, the arrows in-
dicate the points at which the +45° facets nucleate to in-
duce the columnar growth. We show the resulting pat-
terns of different E /N values in Fig. 9. It is worth noting
that the patterns of the columnar growth in the third
stage are not sensitive to the value of E /N when E /N is
somewhat larger than unity, cf. E/N > 3, which is surely
due to the universality. This result will be discussed
again in Sec. IV within the context of scaling.

The thickness of the industrially interesting diamond is
considered to be related to the maximum height limit of
the effective and the region of dense film formation in the
second stage growth. The height limit of the second
stage growth Hy,, is indicated as a function of the E /N
value in Fig. 10. On the other hand, the minimum height
H ;. in the second stage is comparable to the height at
the beginning of the second stage. The minimum height
H ;. and the number of valleys N4 are also shown
versus E /N in the same figure, Fig. 10. Since H,,, is re-
lated to the valley formation due to an accidental stabili-
zation of the first defect, H;, is roughly proportional to
E /N; see the dotted line in Fig. 10. Moreover, we found
that Hy,, can be fitted well by an equation

Hy =10.5X(E/N)*3*+2, (10)

which is depicted by the solid curve in Fig. 10, and that
Ngeeet 18 proportional to the size L of the substrate:
N gefect =0.02 X L.

Next we consider the behavior of the density p in the
EBM. The density as a function of E/N in the third
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FIG. 10. E/N dependences of Hy,, (the height limit in the
dense region), H;, (the minimum height), and Ny (the num-
ber of defects is equal to the number of valleys).
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FIG. 11. E/N dependence of the density p of the EBM

(6=45°) at the third stage. The right (left) hand side corre-
sponds to the strong (weak) etching condition with E/N > 1
(E/N<1). The density p jumps from its minimum value
Pmin=0.2 to p=0.3 in the vicinity of N/E =1.

stage is shown in Fig. 11 in the case of 6=45°. The right
(left) hand side corresponds to the strong (weak) etching
condition with E/N >1 (E/N <1). The center is locat-
ed at E/N=1. We know that p~0.23 in the limit
E/N—0. If we go from small E/N to large E /N in the
figure, the density p decreases gradually around
N/E =10, and has a minimum p_;,=0.20 at N/E =1.
Then it suddenly jumps to p=0.30, and remains constant
for E/N > 1. It is interesting to note that p=0.30 for
E/N >1 is rather close to the value obtained from Eq.
(3), although this coincidence might be accidental. The

o I T T T L ' L) T L] L] [ -
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3x10° |- —
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= i 4
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I ° ]
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opee  ° . ]

0 100 200

E/N

FIG. 12. Number of normal particles n,;, =N (h), required
for growing the objects to a given height 4 in the EBM
(h =100).

abrupt change of the density at E/N =1 is also very in-
teresting, but its detailed analysis is left for future study.

The required number of incident particles, N (4), to
achieve the average height A, say A =100, is shown in
Fig. 12. This number depends strongly on E /N. The in-
crement of N (&) as a function of E /N is faster than a sin-
gle exponential, and effectively no film growth is expected
for large E /N.

Before ending this section, we briefly comment on the
pattern in the EBM, when we change the incident angle 8
from O to finite values. Figure 13 (see also Fig. 11) shows
a typical example in the case 0=m/4. Clearly, the grow-
ing angle § coincides with the incident angle 6 for E/N
somewhat greater than unity. This is probably due to the
weakness of the screening effect in the EBM. Although
we do not present the result here explicitly, the same
behavior is also observed in the PBM.

IV. GROWTH PROCESS OF PBM

In the PBM, as shown in Fig. 2, particles are not al-
lowed to stick either bottom on top or side by side with
surface particles, but stick with probability unity if both
lower-left and lower-right corners are attached simultane-
ously to upper corners of surface particles. Moreover, a

(@  E/N=0/1
(b)  E/N=2/1

() E/N=10/1

(d) E/N=100/1 ;

FIG. 13. Patterns obtained for the case of incident angle
0=45"° for various values of E/N: (a) E/N =0, (b) E/N =2, (c)
E/N =10, and (d) E /N =100.
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normal particle at the ith row sticks with probability p, if
the new height A/ is the same as the height of neighbors
h;_, or h;,, and if only one of the lower corners is at-
tached to an upper corner of a surface particle. Thus only
checkerboard positions can be occupied, if the substrate
is constructed commensurately with a single uniform
checkerboard pattern. In such a model, one can obtain
results similar to those of the EBM expect for the case
E/N =1. In Fig. 14, we show typical results of the PBM
for various values of p. The probability p in the PBM is
related to the ratio of the number of etchant particles to
the total number of particles, p, o =N /(N +E), in the
EBM, if E /N is somewhat greater than unity:

:pnormal — N
3 3(N+E) °

Except for (a) violating p << 1, all the patterns in Fig. 14
are extremely similar to those obtained in the EBM with
p=N/3(N+E). For E/N >>1 (or p <<1), both models
show an abrupt change of patterns at some height from
checkerboard (dense) growth to dendritic growth. For
comparison, the pattern obtained by the EBM with
E /N=5 and the corresponding pattern obtained by the
PBM with p =4 are shown in Fig. 15. They are very
similar to each other and it is actually impossible to dis-
tinguish these two patterns.

Relation (11) is derived as follows; see Fig. 16. Suppose

(1n

(b)

p=1/5

(©)

p = 1/100

(d)

p = 1/10000

FIG. 14. Typical patterns of the PBM with different proba-

bilities (a) p =1, (b) p =1, (©) p = 145, and (d) d = 155

EBM PBM

E/N = 5/1 p=1/18

FIG. 15. Patterns obtained in the EBM with E/N =5 and
the PBM with p = —1%.

that an unstable particle attached at a position A is stabi-
lized by another particle attached at a position B at the
mth step after A is attached. The probability of this
event p,, is estimated as

m—1

3 1
Pm = 1— Ip etchant fp normal (12)

1
—EP normal »

where P p..« =E/(N +E). From this equation, the
probability P, that position A4 is stable after m steps
from its adsorption is given by the equation

Prnormal
~

m
P,= 3 pn 3
n=1

(13)

for m 2 L. Here, we assumed that L is large enough and
Prormal <<Petchant- Since p=lim,, , P, , we derive the
desired equation (11).

V. SCALING ANALYSIS

In order to show that the patterns obtained by the
EBM and PBM belong to the same universality class, we

(a)

(b)

FIG. 16. Illustration for the derivation of Eq. (13) between p
and p,oma =N /(N +E). Position A4 is stabilized by the second
incident particle at position B; (a) is the original surface, (b) the
surface with one particle adsorbed at position 4, and (c) the sur-
face with another particle adsorbed at position B which stabi-
lizes particle 4.



53 ETCHANT AND PROBABILISTIC BALLISTIC MODELS OF . .. 155

analyze the fractal nature of the growing surface. We in-
troduce the parameter o(L,h) defined by
1 N, 172
W= 3 =k 2|,
o(L,h) [Ns lg,l (h; ) ]

N (14)

_1
h=3, ZHh

[

where N is the number of lattice points at the surface, L
the width of the periodic boundary condition, and A; the
height of the structure at the ith lattice from the sub-
strate. For dendritic or columnar growths, there are two
scaling regions in general. One is for h << L, where fluc-
tuations in the surface grow as a power of A. Another is
for h >>L, where the surface is stable and the typical
width does not depend on 4. The scaling equation is

o(L,h)~Lf

, (15)

where the scaling function f (x) behaves as

xB x <1
S~ const, x>>1 (16)
and
hB, h/L*<<1
o(L,h)~ L% h/L?>>1, (17)
with z =a/B. The best fitted values of a and 8 are
for E/N =0/1, a=0.49%0.08, B=0.31+0.05, 18)

for E/N =5/1, a=0.95+0.08, B=0.35+0.05.

The values for E /N=0 should be compared with those of
the standard ballistic model [2,9]; the latter is considered
to be in the same universality class as the KPZ equation
[6]. In two dimensions, the scaling exponents for the
KPZ equation have been determined using
renormalization-group analysis [6,19,20,21] and symme-
try arguments [22] to be a=4 and B=1. These values
are indeed consistent with our data within the estimated
error. On the other hand, the values for the third stage
growth for E/N =5/1 and of course nontrivial, and
should be compared to those of the PBM with

p=N/3(N+E).
tain a and 3 as

For such a PBM (see Fig. 15), we ob-

for p =%, a=1.08+0.08, B=0.32%+0.05, (19)
which coincides with the values of the EBM in the case
E/N =5/1 within the error of estimates. We believe
that the EBM with E/N >>1 and the PBM with p <<1
belong to the same universality class in the third stage
growth, and the corresponding universal exponents are

a~1and B~1/3.

VI. SUMMARY

Ballistic models of diamond growth have been studied
in detail. The effect of the etchant particles in the growth
process has been analyzed in Capraro and Bar-Yam’s
model (EBM). Moreover, a probabilistic model (PBM)
for selective attachment of particles instead of etching
was introduced, and this model successfully reproduces
the EBM results with a significant reduction of computa-
tional time. The growth process is clearly divided into
three stages: perfect growth in the first stage; the second
stage, in which large facets are still available; and the
third stage of very slow and complex growth.

Analytic evaluation is performed for the density of
growth patterns, and coincidence with the simulation of
strong etching is obtained. An expression has been ob-
tained for the density of the resulting material as a func-
tion of the incident angle of particles. The validity of this
expression of large angles was proved by comparing with
numerical results.
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